Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1.

نویسندگان

  • Lukas Stiburek
  • Katerina Vesela
  • Hana Hansikova
  • Petr Pecina
  • Marketa Tesarova
  • Leona Cerna
  • Josef Houstek
  • Jiri Zeman
چکیده

The biogenesis of eukaryotic COX (cytochrome c oxidase) requires several accessory proteins in addition to structural subunits and prosthetic groups. We have analysed the assembly state of COX and SCO2 protein levels in various tissues of six patients with mutations in SCO2 and SURF1. SCO2 is a copper-binding protein presumably involved in formation of the Cu(A) centre of the COX2 subunit. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated that COX holoenzyme is reduced to 10-20% in skeletal muscle and brain of SCO2 and SURF1 patients and to 10-30% in heart of SCO2 patients, whereas liver of SCO2 patients' contained normal holoenzyme levels. The steady-state levels of mutant SCO2 protein ranged from 0 to 20% in different SCO2 patient tissues. In addition, eight distinct COX subcomplexes and unassembled subunits were found, some of them identical with known assembly intermediates of the human enzyme. Heart, brain and skeletal muscle of SCO2 patients contained accumulated levels of the COX1.COX4.COX5A subcomplex, three COX1-containing subcomplexes, a COX4.COX5A subcomplex and two subcomplexes composed of only COX4 or COX5A. The accumulation of COX1.COX4.COX5A subcomplex, along with the virtual absence of free COX2, suggests that the lack of the Cu(A) centre may result in decreased stability of COX2. The appearance of COX4.COX5A subcomplex indicates that association of these nucleus-encoded subunits probably precedes their addition to COX1 during the assembly process. Finally, the consequences of SCO2 and SURF1 mutations suggest the existence of tissue-specific functional differences of these proteins that may serve different tissue-specific requirements for the regulation of COX biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects

Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1(-/-) knockout leads only to a mild COX defect. We used SURF1(-/-) mouse model for detailed analysis of disturbed COX assembly and COX ability to incorp...

متن کامل

Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect

This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fi...

متن کامل

Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast.

Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respi...

متن کامل

Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts.

Mutations in SCO2, a cytochrome c oxidase (COX) assembly gene, have been reported in nine infants with early onset fatal cardioencephalomyopathy and a severe COX deficiency in striated muscle. Studies on a yeast homolog have suggested that human Sco2 acts as a copper chaperone, transporting copper to the Cu(A) site on the Cox II subunit, but the mechanism of action remains unclear. To investiga...

متن کامل

LETTER TO JMG Functional and genetic studies demonstrate that mutation in the COX15 gene can cause Leigh syndrome

L eigh syndrome is a subacute necrotising encephalomyelopathy characterised by delayed onset of symptoms, hypotonia, feeding difficulties, failure to thrive, motor regression, and brain stem signs. The main laboratory findings are raised lactate in the blood and cerebrospinal fluid, but the diagnosis is only confirmed by the presence of bilateral symmetrical lesions in the basal ganglia, thalam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 392 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005